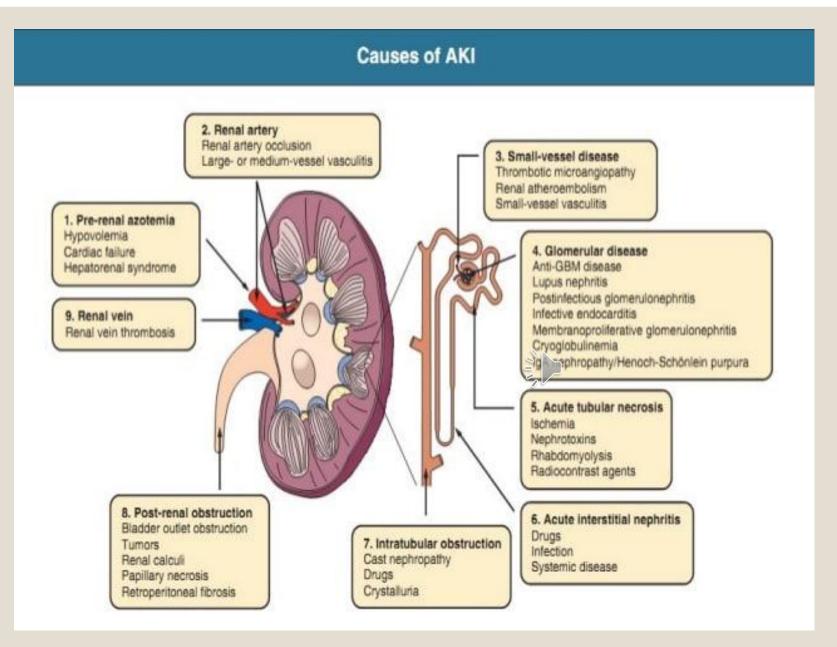


- Approximately 20% of hospitalized patients and up to 60% of intensive care unit (ICU) patients experienced AKI.
- which significantly increases both short and long term morbidity and mortality rates
- There was a stepwise increase in mortality with increasing AKI severity [KDIGO]


• Acute kidney injury (AKI):

is the clinical term used for decline or loss of renal function.

• It is associated with chronic kidney disease (CKD)

Causes of AKI		
Pre-Renal	Intrinsic	Post-Renal
Pathology leading to decreased renal blood flow Hypovolemia Heart failure Liver failure	Pathology causing direct renal parenchymal damage Acute tubular necrosis Interstitial nephritis Glomerulonephritis	Mechanical obstruction along the urinary tract Benign prostatic hypertrophy Urethral stricture Tumors with mass effect

- Acute tubular injury (ATI): Prerenal, intrarenal, postrenal and even unilateral insults can cause ATI
- Dissociation between clinical symptoms and histopathological findings (ATI may be mild and/or even absent):

include prerenal AKI caused by volume depletion as in cardiogenic, allergic or hemorrhagic shock

 In practice, a semiquantitative histopathological scoring of ATI as {mild, moderate or severe (or focal versus diffuse)} is preferable instead of the term acute tubular necrosis (ATN)

- ATN is much less common compared with ATI and requires prolonged and sustained tubular injury that is usually absent in acute AKI (The exception is cortical necrosis)
- The clinical AKI in humans is a diverse process with multiple etiologies and varying pathophysiology such that single treatment options are unlikely to prove effective

- The creatinine may not reflect the severity of AKI in patients who produce less creatinine, such as those who are malnourished or elderly.
- Urine output criteria detect patients with AKI 11 h earlier than serum creatinine criteria

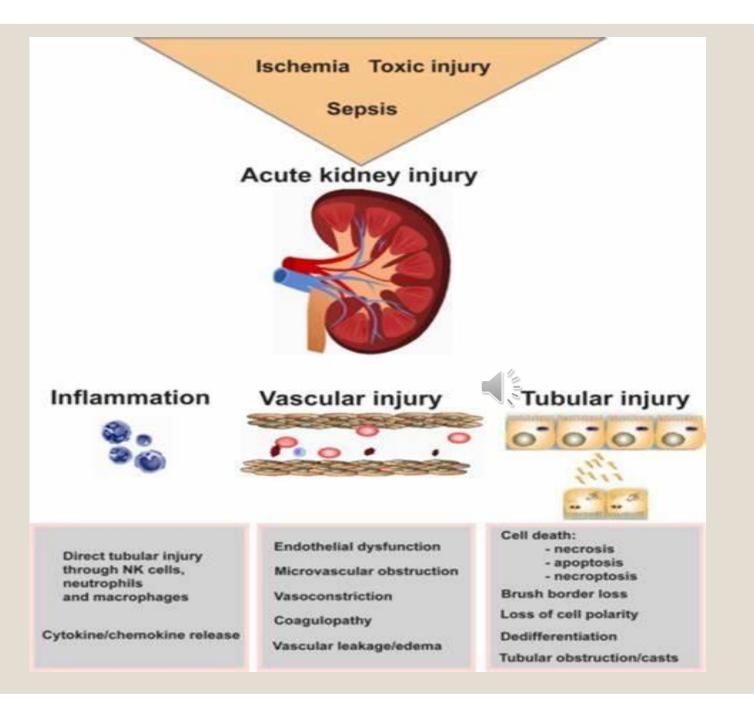
Staging of AKI(KDIGO)

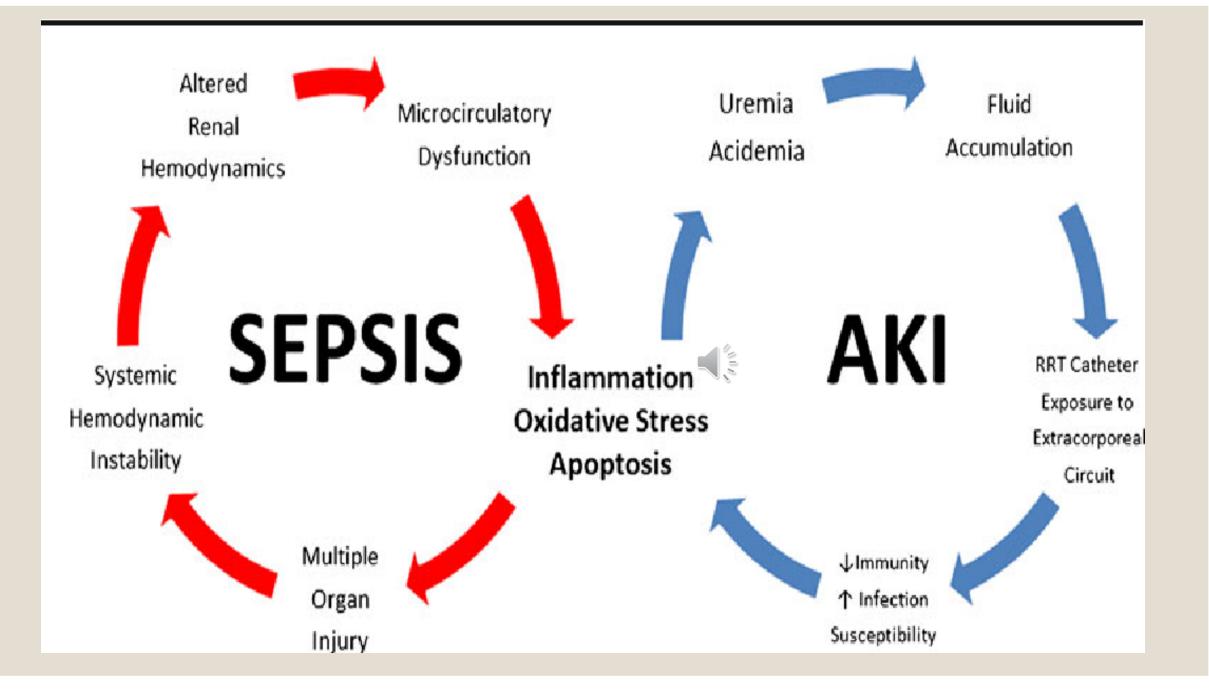
Stage	Serum Creatinine	Urine output
1	1.5-1.9 times baseline within 1 wk or ≥ 0.3 mg/dl increase within 48 hrs	<0.5ml/kg/h for 6-12 hrs
2	2.0-2.9 times baseline	<0.5ml/kg/h for ≥ 12 hrs
3	3.0 times baseline or increase in serum creat to ≥ 4.0 mg/dl or initiation of RRT or	<0.3ml/kg/h for ≥ 24 hrs or Anuria for ≥ 12 hrs
	in patients < 18 yrs, decrease in eGFR to <35ml/min per 1.73 m ²)	

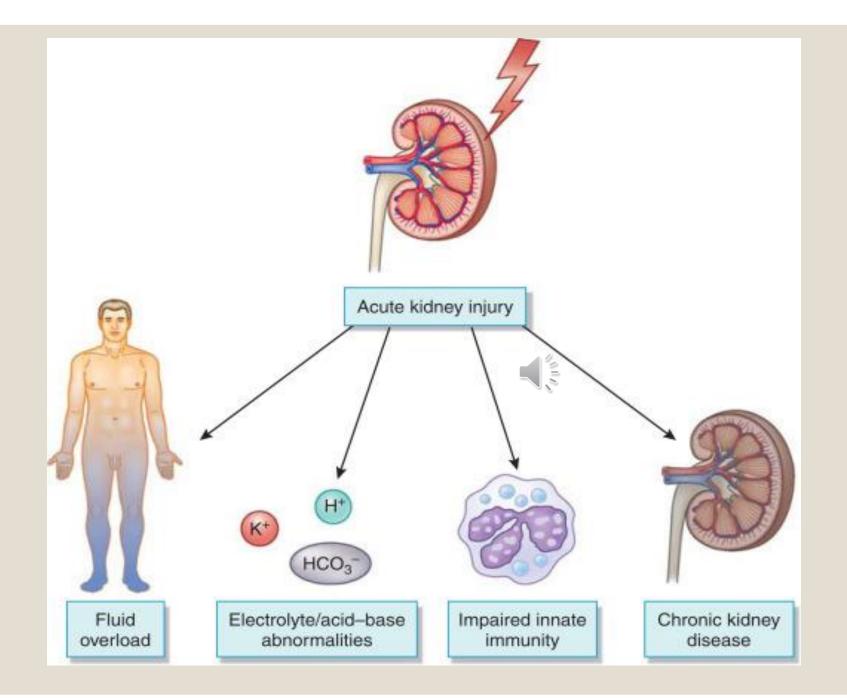
• AKI biomarkers:

- AKI biomarkers have predominantly been restricted to research use and have not yet permeated clinical practice.
- One reason for this discrepancy is the use of creatinine as a flawed gold standard for biomarker qualification

- The major signifcant predictors for the development of AKI in the ICU:
- sepsis; hypovolemia; CKD; chronic cardiovascular diseases; age>60 years; diabetes mellitus; hypertension
- Sepsis and hypovolemia were common etiologies
- Acute kidney injury was associated with increased length of hospital stay and a very high absolute mortality rate.


- A majority of the excess risk of mortality associated with AKI was attenuated by its fluid volume and metabolic complications, particularly in severe AKI.
- The RRT is associated with a better outcome in patients with AKI-related complications


- Severe malnutrition among patients with AKI is an important risk factor for mortality
- Despite serum albumin level having limited value as a nutrition marker, its use as a predictor of mortality is well described in patients with AKI



• AKI pathophysiology:

- Oxidative stress
- Endothelial injury
- Mitochondrial injury
- Innate immunity

COVID-19

- The COVID-19 has rapidly evolved into a global pandemic.
- about 5% develop severe symptoms, which can include acute respiratory distress syndrome, septic shock, and multiple organ failure
- Kidney involvement is frequent, with clinical presentation ranging from mild proteinuria to progressive AKI necessitating RRT
- As no specific treatment options exist for AKI secondary to COVID-19, intensive care is largely supportive

Pathophysiology of AKI in COVID-19

- multifactorial
- Predisposing factors (eg, sepsis, hypovolaemia, and nephrotoxins)
- Cardiorenal syndrome, particularly right ventricular failure secondary to COVID-19 pneumonia
- left ventricular dysfunction might lead to low cardiac output
- \circ the endothelium is affected (lung and in the kidney)
- directly infect the renal tubular epithelium and podocytes through an ACE2-dependent pathway
- Immune response dysregulation (lymphopenia and cytokine storm)
- Rhabdomyolysis
- Macrophage activation syndrome
- Hypercoagulability
- endotheliitis

- Both early and late forms of AKI (that is, AKI at presentation and AKI developing after presentation) were associated with an increased risk of in-hospital mortality.
- Independent variables for AKI development were the presence of CKD, C-reactive protein level and requirement for ventilatory support.

- Clinical features:
- haematuria
- Proteinuria: low molecular weight rather than albuminuria, suggesting a tubular origin rather than glomerular injury, and can be used to identify patients with early-stage AKI
- Fanconi syndrome
- ∘ ↑Cr
- $\circ \downarrow$ urine out put

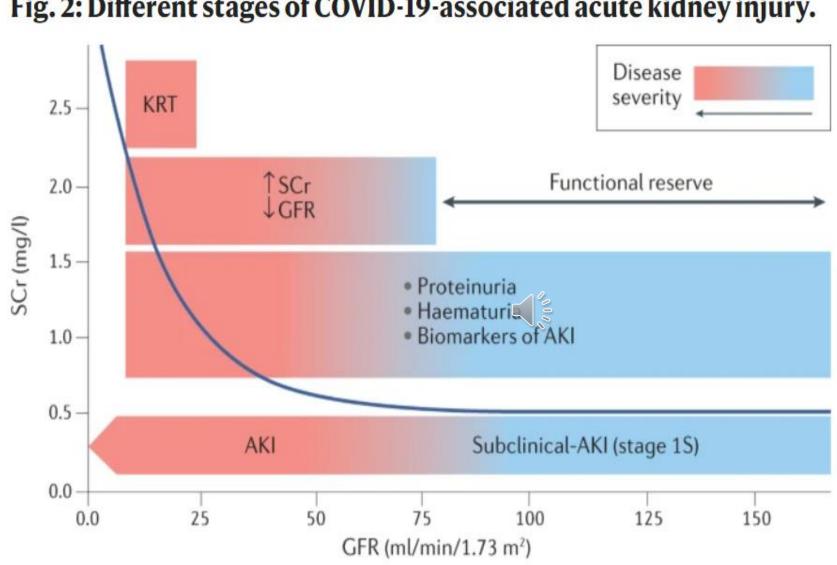
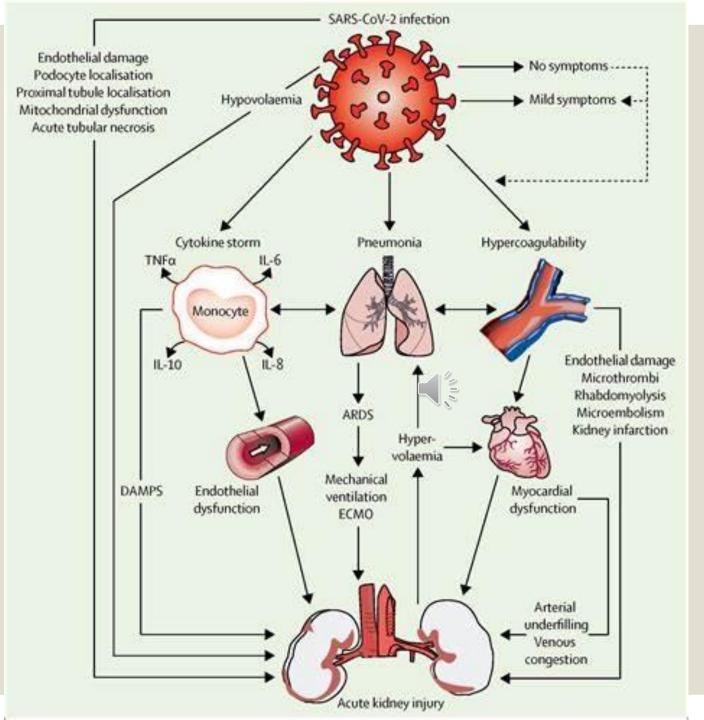



Fig. 2: Different stages of COVID-19-associated acute kidney injury.

• Biopsy:

- The kidney injury seen in cases with the most severe respiratory disease in the ICU is predominantly tubular (66.7%)
- Collapsing glomerulopathy and focal segmental glomerulosclerosis were not seen in critically ill patients but were observed in 70.6% of cases not in the ICU
- Collapsing glomerulopathy correlated highly with the expression of high-risk APOL1 genotypes

Histopathological findings:

- Acute tubular injury is common, it is often mild
- Systemic haemodynamic instability
- Cytokine storm syndrome: levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19
- Tissue inflammation

- local immune cell infiltration
- Endothelial injury
- Microvascular thrombi
- viral invasion in the kidneys

Renal histology:

- Tubular injury: uncoupling between the extent of histological injury and decline of kidney function
- Collapsing glomerulopathy: COVID-19-associated nephropathy (COVAN), common mechanisms with HIV-associated nephropathy with podocyte injury
- Endothelial injury: increased levels of plasma biomarkers of endothelial injury (for example, soluble (s) E-selectin, sP-selectin, ANG, sICAM1 and von Willebrand factor antigen) and platelet activation (soluble thrombomodulin) are associated with poor prognosis
- Thrombotic microangiopathy: biomarkers of coagulation and fibrinolysis activation (fibrinogen and D-dimer) have been repeatedly associated with an increased risk of death, sARS-CoV-2 has bind to platelets via ACE2, leading to platelet activation and immunothrombosis

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon
- Complement

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammation mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon
- Complement
- Adaptive immunity

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon
- Complement
- Adaptive immunity
- Humoral immunity

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon
- Complement
- Adaptive immunity
- Humoral immunity
- cytokine storm syndrome

- Several alterations in both innate and adaptive immune responses
- Immunosenescence : inflammageing, a low-grade inflammatory state that may have a key role in determining organ dysfunction, as well as by ineffective T cell responses and antibody production...
- Inflammation: The enhanced release of inflammatory mediators by immune and resident kidney cells is likely to be a key mechanism of tissue damage in patients with COVID-19.
- Interferon
- Complement
- Adaptive immunity
- Humoral immunity
- cytokine storm syndrome
- ACE2 and the renin–angiotensin system

•Non-specific factors:

- In addition to virus-specific responses, the pathogenesis of AKI in the context of COVID-19 most likely also involves factors that are not specific to the virus but are part of a general response to critical illness or its treatment:
- haemodynamic factors
- drug toxicity
- impact of organ support systems

 Another series from France demonstrated tubular injury in the most severely ill cohort whereas glomerular pathology was restricted to the non-ICU patients

Box 1 Factors that may contribute to COVID-19-associated acute kidney injury

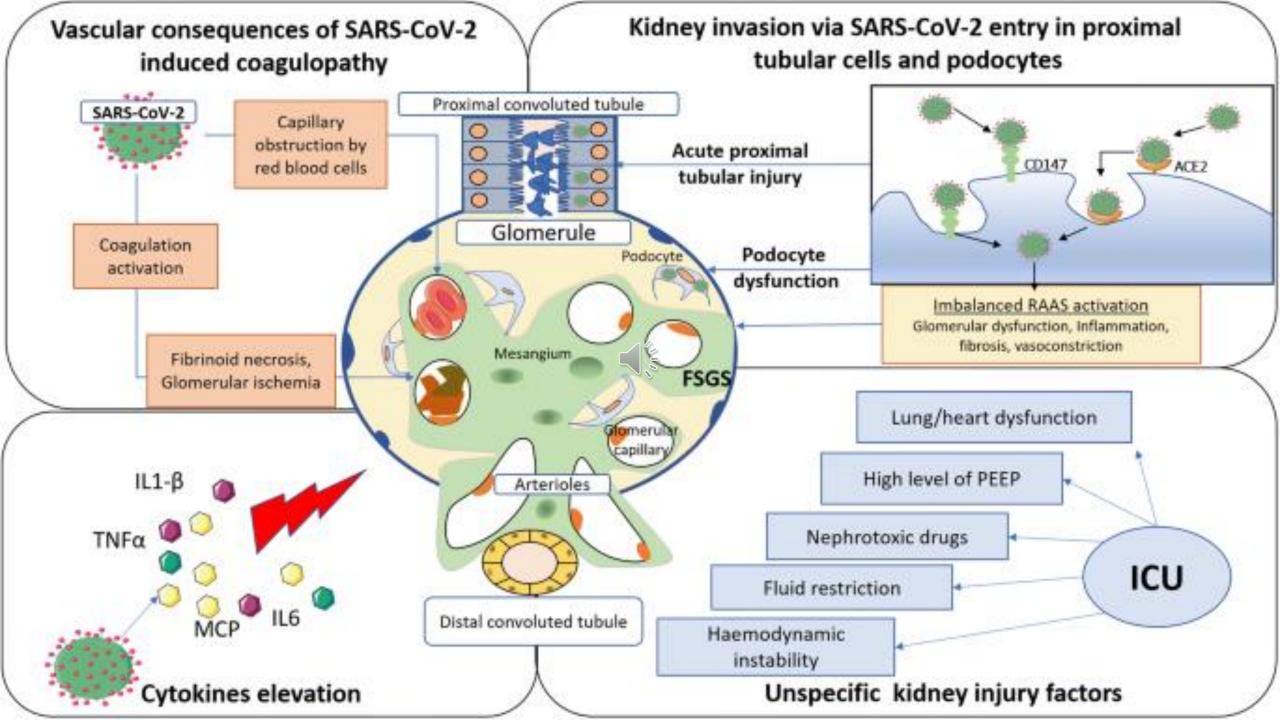
Acute tubular injury

- Regional inflammation
- Direct viral infection
- Renal compartment syndrome
- Tissue hypoxia hypoperfusion leading to hypoxaemia, hypotension, hypovolaemia and heart failure
- Nephrotoxic-induced injury (potentially associated with the use of antibiotics (vancomycin, aminoglycosides, colistin) or antivirals (remdesivir, ritonavir))
- Rhabdomyolysis

Vascular injury

- Endotheliitis
- Microthrombi
- Thrombotic microangiopathy

Glomerular injury


- Collapsing glomerulopathy (potentially caused by interferonassociated podocyte injury)
- Glomerulonephritis

Interstitial injury

- Acute interstitial nephritis; infiltration by immune cells
- Interstitial oedema

- The major difference between COVID-19 AKI and other types of sepsis:
- the inconsistent finding of virus particles in epithelial cells combined with more prominent vascular alterations in COVID-19 AKI.

- No specific treatment for AKI is established except for certain glomerular or vascular diseases
- $\circ\,$ firstly, treatment for underlying disease
- secondly, maintenance of renal blood flow and perfusion to preserve kidney function and recovery
- $\circ\,$ third, supportive treatment for electrolyte disorders and uremic syndrome
- $\circ~$ fourth, renal replacement the rapy when needed

Intravenous Fluid Resuscitation

- Although administration of intravenous fluids in patients with sepsis and/or hypovolemia is beneficial initially, fluid overload, especially in later disease, may confer harm
- Intravenous fluids should be used judiciously in patients with AKI who are not "volume responsive.
- After significant volume resuscitation, even if patients remain volume responsive, vasopressor support should be considered to avoid markedly positive fluid balance.

• The choice of solution is controversial

- There is a clear indication for albumin in the setting of large-volume paracentesis for patients with end-stage liver disease because albumin infusion is associated with lower risk for AKI.
- Albumin (and likely other colloids) should be avoided in patients with traumatic brain injury due to an increased risk for death.
- $\circ\,$ there are no data to support the routine use of colloid for volume resuscitation.

• Administration of 0.9% saline solution is associated with increased extravascular volume and decreased renal cortical tissue perfusion compared to a balanced salt solution.

Patients receiving normal saline solution are at risk for hyperchloremic metabolic acidosis

Diuretics

- In addition to preventing volume overload, loop diuretics theoretically attenuate ischemic tubular injury
- the use of diuretics in the setting of volume overload

Nutrition and Glucose Control

- AKI is a catabolic state, and patients with AKI may need enteral or parenteral nutritional support
- The enteral route is preferred due to the lower risk for infection (and lower volumes needed to administer equivalent calories).
- The intensive glycemic control was associated with higher mortality and a greater incidence of severe hypoglycemia

Blood Pressure Management

• 2 blood pressure goals: MAP goal (65-70 mm Hg)

higher goal (80-85 mm Hg)

- There was no difference in mortality between the 2 treatment groups.
- However, patients with chronic hypertensions in the higher MAP group had significantly lower rates of AKI and RRT
- Patients in the higher MAP group had higher rates of atrial fibrillation.

Clinical management of covid-19

- avoidance of nephrotoxins
- regular monitoring of serum creatinine and urine output
- haemodynamic monitoring
- Mitigation of volutrauma and barotrauma
- hypovolaemia should be corrected
- avoid volume overload

RRT and extracorporeal support

- If conservative management fails, RRT should be considered in patients with volume overload, especially those with refractory hypoxaemia
- CRRT is the preferred modality in haemodynamically unstable patients with COVID-19
- When RRT is carried out in conjunction with ECMO, RRT should be performed through venous access independent of the ECMO circuit to minimise clot formation in the latter

in some patients because of the paucity of sites available for direct cannulation, the RRT outflow should be connected to the pre-oxygenator limb of the ECMO circuit, as the oxygenator can serve as a protective barrier and minimise risk of systemic gas embolism in the lungs

- The anticoagulation protocols for the extracorporeal circuit must be tailored to the needs of individual patients
- In CRRT, regional citrate anticoagulation is more efficacious than other anticoagulation methods

- in the early phases of cytokine storm, the application of haemoperfusion with sorbent cartridges might prevent cytokine induced kidney damage
- Extracorporeal treatments do not compromise the experimental antibody-based therapies used in COVID-19, such as tocilizumab, intravenous immunoglobulins, and convalescent plasma administration
- The upper size of molecules that can be removed with RRT or haemadsorption (around 60 kDa)
- The use of high cutoff or medium cutoff membranes in CVVHD to increase cytokine removal

- Lung-protective ventilation with tidal volume at 6 mL/kg predicted body weight might lead to hypercapnia, respiratory acidosis, increased need for vasopressors, and AKI
- In some patients, bacterial infection co-occurs with SARS-CoV-2 infection and a sepsislike syndrome can develop

 RRT was associated with a better outcome only in the subgroups with AKI-related complication

